3.7.87 \(\int \frac {1}{x^{2/3} (a+b x)^2} \, dx\) [687]

Optimal. Leaf size=113 \[ \frac {\sqrt [3]{x}}{a (a+b x)}-\frac {2 \tan ^{-1}\left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} a^{5/3} \sqrt [3]{b}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{a^{5/3} \sqrt [3]{b}}-\frac {\log (a+b x)}{3 a^{5/3} \sqrt [3]{b}} \]

[Out]

x^(1/3)/a/(b*x+a)+ln(a^(1/3)+b^(1/3)*x^(1/3))/a^(5/3)/b^(1/3)-1/3*ln(b*x+a)/a^(5/3)/b^(1/3)-2/3*arctan(1/3*(a^
(1/3)-2*b^(1/3)*x^(1/3))/a^(1/3)*3^(1/2))/a^(5/3)/b^(1/3)*3^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 113, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.385, Rules used = {44, 60, 631, 210, 31} \begin {gather*} -\frac {2 \text {ArcTan}\left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} a^{5/3} \sqrt [3]{b}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{a^{5/3} \sqrt [3]{b}}-\frac {\log (a+b x)}{3 a^{5/3} \sqrt [3]{b}}+\frac {\sqrt [3]{x}}{a (a+b x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^(2/3)*(a + b*x)^2),x]

[Out]

x^(1/3)/(a*(a + b*x)) - (2*ArcTan[(a^(1/3) - 2*b^(1/3)*x^(1/3))/(Sqrt[3]*a^(1/3))])/(Sqrt[3]*a^(5/3)*b^(1/3))
+ Log[a^(1/3) + b^(1/3)*x^(1/3)]/(a^(5/3)*b^(1/3)) - Log[a + b*x]/(3*a^(5/3)*b^(1/3))

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 44

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && LtQ[n, 0]

Rule 60

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(2/3)), x_Symbol] :> With[{q = Rt[-(b*c - a*d)/b, 3]}, Simp[-
Log[RemoveContent[a + b*x, x]]/(2*b*q^2), x] + (Dist[3/(2*b*q), Subst[Int[1/(q^2 - q*x + x^2), x], x, (c + d*x
)^(1/3)], x] + Dist[3/(2*b*q^2), Subst[Int[1/(q + x), x], x, (c + d*x)^(1/3)], x])] /; FreeQ[{a, b, c, d}, x]
&& NegQ[(b*c - a*d)/b]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin {align*} \int \frac {1}{x^{2/3} (a+b x)^2} \, dx &=\frac {\sqrt [3]{x}}{a (a+b x)}+\frac {2 \int \frac {1}{x^{2/3} (a+b x)} \, dx}{3 a}\\ &=\frac {\sqrt [3]{x}}{a (a+b x)}-\frac {\log (a+b x)}{3 a^{5/3} \sqrt [3]{b}}+\frac {\text {Subst}\left (\int \frac {1}{\frac {a^{2/3}}{b^{2/3}}-\frac {\sqrt [3]{a} x}{\sqrt [3]{b}}+x^2} \, dx,x,\sqrt [3]{x}\right )}{a^{4/3} b^{2/3}}+\frac {\text {Subst}\left (\int \frac {1}{\frac {\sqrt [3]{a}}{\sqrt [3]{b}}+x} \, dx,x,\sqrt [3]{x}\right )}{a^{5/3} \sqrt [3]{b}}\\ &=\frac {\sqrt [3]{x}}{a (a+b x)}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{a^{5/3} \sqrt [3]{b}}-\frac {\log (a+b x)}{3 a^{5/3} \sqrt [3]{b}}+\frac {2 \text {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1-\frac {2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt [3]{a}}\right )}{a^{5/3} \sqrt [3]{b}}\\ &=\frac {\sqrt [3]{x}}{a (a+b x)}-\frac {2 \tan ^{-1}\left (\frac {1-\frac {2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt {3} a^{5/3} \sqrt [3]{b}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{a^{5/3} \sqrt [3]{b}}-\frac {\log (a+b x)}{3 a^{5/3} \sqrt [3]{b}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.16, size = 134, normalized size = 1.19 \begin {gather*} \frac {\frac {3 a^{2/3} \sqrt [3]{x}}{a+b x}-\frac {2 \sqrt {3} \tan ^{-1}\left (\frac {1-\frac {2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}+\frac {2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{\sqrt [3]{b}}-\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} \sqrt [3]{x}+b^{2/3} x^{2/3}\right )}{\sqrt [3]{b}}}{3 a^{5/3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^(2/3)*(a + b*x)^2),x]

[Out]

((3*a^(2/3)*x^(1/3))/(a + b*x) - (2*Sqrt[3]*ArcTan[(1 - (2*b^(1/3)*x^(1/3))/a^(1/3))/Sqrt[3]])/b^(1/3) + (2*Lo
g[a^(1/3) + b^(1/3)*x^(1/3)])/b^(1/3) - Log[a^(2/3) - a^(1/3)*b^(1/3)*x^(1/3) + b^(2/3)*x^(2/3)]/b^(1/3))/(3*a
^(5/3))

________________________________________________________________________________________

Maple [A]
time = 0.11, size = 117, normalized size = 1.04

method result size
derivativedivides \(\frac {x^{\frac {1}{3}}}{a \left (b x +a \right )}+\frac {\frac {2 \ln \left (x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}-\frac {\ln \left (x^{\frac {2}{3}}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}+\frac {2 \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x^{\frac {1}{3}}}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}}{a}\) \(117\)
default \(\frac {x^{\frac {1}{3}}}{a \left (b x +a \right )}+\frac {\frac {2 \ln \left (x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}-\frac {\ln \left (x^{\frac {2}{3}}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}+\frac {2 \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x^{\frac {1}{3}}}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}}{a}\) \(117\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^(2/3)/(b*x+a)^2,x,method=_RETURNVERBOSE)

[Out]

x^(1/3)/a/(b*x+a)+2/a*(1/3/b/(a/b)^(2/3)*ln(x^(1/3)+(a/b)^(1/3))-1/6/b/(a/b)^(2/3)*ln(x^(2/3)-(a/b)^(1/3)*x^(1
/3)+(a/b)^(2/3))+1/3/b/(a/b)^(2/3)*3^(1/2)*arctan(1/3*3^(1/2)*(2/(a/b)^(1/3)*x^(1/3)-1)))

________________________________________________________________________________________

Maxima [A]
time = 0.49, size = 127, normalized size = 1.12 \begin {gather*} \frac {x^{\frac {1}{3}}}{a b x + a^{2}} + \frac {2 \, \sqrt {3} \arctan \left (\frac {\sqrt {3} {\left (2 \, x^{\frac {1}{3}} - \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{3 \, a b \left (\frac {a}{b}\right )^{\frac {2}{3}}} - \frac {\log \left (x^{\frac {2}{3}} - x^{\frac {1}{3}} \left (\frac {a}{b}\right )^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{3 \, a b \left (\frac {a}{b}\right )^{\frac {2}{3}}} + \frac {2 \, \log \left (x^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 \, a b \left (\frac {a}{b}\right )^{\frac {2}{3}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(2/3)/(b*x+a)^2,x, algorithm="maxima")

[Out]

x^(1/3)/(a*b*x + a^2) + 2/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x^(1/3) - (a/b)^(1/3))/(a/b)^(1/3))/(a*b*(a/b)^(2/3)
) - 1/3*log(x^(2/3) - x^(1/3)*(a/b)^(1/3) + (a/b)^(2/3))/(a*b*(a/b)^(2/3)) + 2/3*log(x^(1/3) + (a/b)^(1/3))/(a
*b*(a/b)^(2/3))

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 174 vs. \(2 (82) = 164\).
time = 0.87, size = 387, normalized size = 3.42 \begin {gather*} \left [\frac {3 \, a^{2} b x^{\frac {1}{3}} + 3 \, \sqrt {\frac {1}{3}} {\left (a b^{2} x + a^{2} b\right )} \sqrt {-\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}} \log \left (\frac {2 \, a b x - a^{2} + 3 \, \sqrt {\frac {1}{3}} {\left (2 \, a b x^{\frac {2}{3}} - \left (a^{2} b\right )^{\frac {1}{3}} a + \left (a^{2} b\right )^{\frac {2}{3}} x^{\frac {1}{3}}\right )} \sqrt {-\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}} - 3 \, \left (a^{2} b\right )^{\frac {1}{3}} a x^{\frac {1}{3}}}{b x + a}\right ) - \left (a^{2} b\right )^{\frac {2}{3}} {\left (b x + a\right )} \log \left (a b x^{\frac {2}{3}} + \left (a^{2} b\right )^{\frac {1}{3}} a - \left (a^{2} b\right )^{\frac {2}{3}} x^{\frac {1}{3}}\right ) + 2 \, \left (a^{2} b\right )^{\frac {2}{3}} {\left (b x + a\right )} \log \left (a b x^{\frac {1}{3}} + \left (a^{2} b\right )^{\frac {2}{3}}\right )}{3 \, {\left (a^{3} b^{2} x + a^{4} b\right )}}, \frac {3 \, a^{2} b x^{\frac {1}{3}} + 6 \, \sqrt {\frac {1}{3}} {\left (a b^{2} x + a^{2} b\right )} \sqrt {\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}} \arctan \left (-\frac {\sqrt {\frac {1}{3}} {\left (\left (a^{2} b\right )^{\frac {1}{3}} a - 2 \, \left (a^{2} b\right )^{\frac {2}{3}} x^{\frac {1}{3}}\right )} \sqrt {\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}}}{a^{2}}\right ) - \left (a^{2} b\right )^{\frac {2}{3}} {\left (b x + a\right )} \log \left (a b x^{\frac {2}{3}} + \left (a^{2} b\right )^{\frac {1}{3}} a - \left (a^{2} b\right )^{\frac {2}{3}} x^{\frac {1}{3}}\right ) + 2 \, \left (a^{2} b\right )^{\frac {2}{3}} {\left (b x + a\right )} \log \left (a b x^{\frac {1}{3}} + \left (a^{2} b\right )^{\frac {2}{3}}\right )}{3 \, {\left (a^{3} b^{2} x + a^{4} b\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(2/3)/(b*x+a)^2,x, algorithm="fricas")

[Out]

[1/3*(3*a^2*b*x^(1/3) + 3*sqrt(1/3)*(a*b^2*x + a^2*b)*sqrt(-(a^2*b)^(1/3)/b)*log((2*a*b*x - a^2 + 3*sqrt(1/3)*
(2*a*b*x^(2/3) - (a^2*b)^(1/3)*a + (a^2*b)^(2/3)*x^(1/3))*sqrt(-(a^2*b)^(1/3)/b) - 3*(a^2*b)^(1/3)*a*x^(1/3))/
(b*x + a)) - (a^2*b)^(2/3)*(b*x + a)*log(a*b*x^(2/3) + (a^2*b)^(1/3)*a - (a^2*b)^(2/3)*x^(1/3)) + 2*(a^2*b)^(2
/3)*(b*x + a)*log(a*b*x^(1/3) + (a^2*b)^(2/3)))/(a^3*b^2*x + a^4*b), 1/3*(3*a^2*b*x^(1/3) + 6*sqrt(1/3)*(a*b^2
*x + a^2*b)*sqrt((a^2*b)^(1/3)/b)*arctan(-sqrt(1/3)*((a^2*b)^(1/3)*a - 2*(a^2*b)^(2/3)*x^(1/3))*sqrt((a^2*b)^(
1/3)/b)/a^2) - (a^2*b)^(2/3)*(b*x + a)*log(a*b*x^(2/3) + (a^2*b)^(1/3)*a - (a^2*b)^(2/3)*x^(1/3)) + 2*(a^2*b)^
(2/3)*(b*x + a)*log(a*b*x^(1/3) + (a^2*b)^(2/3)))/(a^3*b^2*x + a^4*b)]

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 434 vs. \(2 (107) = 214\).
time = 39.31, size = 434, normalized size = 3.84 \begin {gather*} \begin {cases} \frac {\tilde {\infty }}{x^{\frac {5}{3}}} & \text {for}\: a = 0 \wedge b = 0 \\\frac {3 \sqrt [3]{x}}{a^{2}} & \text {for}\: b = 0 \\- \frac {3}{5 b^{2} x^{\frac {5}{3}}} & \text {for}\: a = 0 \\\frac {3 a \sqrt [3]{x}}{3 a^{3} + 3 a^{2} b x} - \frac {2 a \sqrt [3]{- \frac {a}{b}} \log {\left (\sqrt [3]{x} - \sqrt [3]{- \frac {a}{b}} \right )}}{3 a^{3} + 3 a^{2} b x} + \frac {a \sqrt [3]{- \frac {a}{b}} \log {\left (4 x^{\frac {2}{3}} + 4 \sqrt [3]{x} \sqrt [3]{- \frac {a}{b}} + 4 \left (- \frac {a}{b}\right )^{\frac {2}{3}} \right )}}{3 a^{3} + 3 a^{2} b x} + \frac {2 \sqrt {3} a \sqrt [3]{- \frac {a}{b}} \operatorname {atan}{\left (\frac {2 \sqrt {3} \sqrt [3]{x}}{3 \sqrt [3]{- \frac {a}{b}}} + \frac {\sqrt {3}}{3} \right )}}{3 a^{3} + 3 a^{2} b x} - \frac {2 a \sqrt [3]{- \frac {a}{b}} \log {\left (2 \right )}}{3 a^{3} + 3 a^{2} b x} - \frac {2 b x \sqrt [3]{- \frac {a}{b}} \log {\left (\sqrt [3]{x} - \sqrt [3]{- \frac {a}{b}} \right )}}{3 a^{3} + 3 a^{2} b x} + \frac {b x \sqrt [3]{- \frac {a}{b}} \log {\left (4 x^{\frac {2}{3}} + 4 \sqrt [3]{x} \sqrt [3]{- \frac {a}{b}} + 4 \left (- \frac {a}{b}\right )^{\frac {2}{3}} \right )}}{3 a^{3} + 3 a^{2} b x} + \frac {2 \sqrt {3} b x \sqrt [3]{- \frac {a}{b}} \operatorname {atan}{\left (\frac {2 \sqrt {3} \sqrt [3]{x}}{3 \sqrt [3]{- \frac {a}{b}}} + \frac {\sqrt {3}}{3} \right )}}{3 a^{3} + 3 a^{2} b x} - \frac {2 b x \sqrt [3]{- \frac {a}{b}} \log {\left (2 \right )}}{3 a^{3} + 3 a^{2} b x} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**(2/3)/(b*x+a)**2,x)

[Out]

Piecewise((zoo/x**(5/3), Eq(a, 0) & Eq(b, 0)), (3*x**(1/3)/a**2, Eq(b, 0)), (-3/(5*b**2*x**(5/3)), Eq(a, 0)),
(3*a*x**(1/3)/(3*a**3 + 3*a**2*b*x) - 2*a*(-a/b)**(1/3)*log(x**(1/3) - (-a/b)**(1/3))/(3*a**3 + 3*a**2*b*x) +
a*(-a/b)**(1/3)*log(4*x**(2/3) + 4*x**(1/3)*(-a/b)**(1/3) + 4*(-a/b)**(2/3))/(3*a**3 + 3*a**2*b*x) + 2*sqrt(3)
*a*(-a/b)**(1/3)*atan(2*sqrt(3)*x**(1/3)/(3*(-a/b)**(1/3)) + sqrt(3)/3)/(3*a**3 + 3*a**2*b*x) - 2*a*(-a/b)**(1
/3)*log(2)/(3*a**3 + 3*a**2*b*x) - 2*b*x*(-a/b)**(1/3)*log(x**(1/3) - (-a/b)**(1/3))/(3*a**3 + 3*a**2*b*x) + b
*x*(-a/b)**(1/3)*log(4*x**(2/3) + 4*x**(1/3)*(-a/b)**(1/3) + 4*(-a/b)**(2/3))/(3*a**3 + 3*a**2*b*x) + 2*sqrt(3
)*b*x*(-a/b)**(1/3)*atan(2*sqrt(3)*x**(1/3)/(3*(-a/b)**(1/3)) + sqrt(3)/3)/(3*a**3 + 3*a**2*b*x) - 2*b*x*(-a/b
)**(1/3)*log(2)/(3*a**3 + 3*a**2*b*x), True))

________________________________________________________________________________________

Giac [A]
time = 1.76, size = 132, normalized size = 1.17 \begin {gather*} -\frac {2 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}} \log \left ({\left | x^{\frac {1}{3}} - \left (-\frac {a}{b}\right )^{\frac {1}{3}} \right |}\right )}{3 \, a^{2}} + \frac {2 \, \sqrt {3} \left (-a b^{2}\right )^{\frac {1}{3}} \arctan \left (\frac {\sqrt {3} {\left (2 \, x^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{3 \, a^{2} b} + \frac {x^{\frac {1}{3}}}{{\left (b x + a\right )} a} + \frac {\left (-a b^{2}\right )^{\frac {1}{3}} \log \left (x^{\frac {2}{3}} + x^{\frac {1}{3}} \left (-\frac {a}{b}\right )^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {2}{3}}\right )}{3 \, a^{2} b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(2/3)/(b*x+a)^2,x, algorithm="giac")

[Out]

-2/3*(-a/b)^(1/3)*log(abs(x^(1/3) - (-a/b)^(1/3)))/a^2 + 2/3*sqrt(3)*(-a*b^2)^(1/3)*arctan(1/3*sqrt(3)*(2*x^(1
/3) + (-a/b)^(1/3))/(-a/b)^(1/3))/(a^2*b) + x^(1/3)/((b*x + a)*a) + 1/3*(-a*b^2)^(1/3)*log(x^(2/3) + x^(1/3)*(
-a/b)^(1/3) + (-a/b)^(2/3))/(a^2*b)

________________________________________________________________________________________

Mupad [B]
time = 0.22, size = 134, normalized size = 1.19 \begin {gather*} \frac {2\,\ln \left (\frac {6\,b^{5/3}}{a^{2/3}}+\frac {6\,b^2\,x^{1/3}}{a}\right )}{3\,a^{5/3}\,b^{1/3}}+\frac {x^{1/3}}{a\,\left (a+b\,x\right )}+\frac {\ln \left (\frac {6\,b^2\,x^{1/3}}{a}+\frac {3\,b^{5/3}\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{a^{2/3}}\right )\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{3\,a^{5/3}\,b^{1/3}}-\frac {\ln \left (\frac {6\,b^2\,x^{1/3}}{a}-\frac {3\,b^{5/3}\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{a^{2/3}}\right )\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{3\,a^{5/3}\,b^{1/3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^(2/3)*(a + b*x)^2),x)

[Out]

(2*log((6*b^(5/3))/a^(2/3) + (6*b^2*x^(1/3))/a))/(3*a^(5/3)*b^(1/3)) + x^(1/3)/(a*(a + b*x)) + (log((6*b^2*x^(
1/3))/a + (3*b^(5/3)*(3^(1/2)*1i - 1))/a^(2/3))*(3^(1/2)*1i - 1))/(3*a^(5/3)*b^(1/3)) - (log((6*b^2*x^(1/3))/a
 - (3*b^(5/3)*(3^(1/2)*1i + 1))/a^(2/3))*(3^(1/2)*1i + 1))/(3*a^(5/3)*b^(1/3))

________________________________________________________________________________________